Transferring nutrient reduction requirements from German Baltic Sea coastal and marine waters to inland

Wera Leujak, German Environment Agency

Overview

- Step 1 Deriving reference conditions and G/M boundaries for nutrients and other eutrophication-related parameters
- Step 2 Setting management targets for riverine nutrient concentrations at the border limnic/marine
- Step 3 Transferring these targets inland

Step 1 – Deriving reference conditions and G/M boundaries for nutrients and other eutrophication-related parameters

- Not enough historic in-situ data
- Anecdotal evidence that around 1880 macrophytes were still abundant in coastal waters and water transparency was high
- Model MONERIS (model for the quantification of nutrient emissions from point and diffuse sources in river catchments) used to estimate riverine nutrient inputs around 1880 (based on today's hydrology)

Model output

TN Concentrations

TN inputs

Average TN-concentration was <1mg/l; TP concentration <0,05mg/l

Average nutrient inputs are for TN 80% lower than today and for TP 70% lower

Extrapolation of the nutrient concentrations into the sea using a modelling approach

- Modelling with ERGOM-MOM model (3D ecosystem model of the Baltic Sea)
- 1880 nutrient loads used as a basis to simulate the resulting nutrient (and chl-a, secchi, oxygen) concentrations
- Relative difference between ERGOM-MOM simulations of the present situation and 1880 was calculated and then multiplied with recent monitoring data
- To set G/M boundaries a 50% deviation from reference conditions (1880) was allowed

Model output for relative change

Step 2 – Setting management targets for riverine nutrient concentrations at the border limnic/marine

- Average chla-concentration of the south-western Balic Sea was calculated (3,6μg/l)
- Statistical model was derived based on the relationship between Chla and nitrogen loads and N:P ratios

linear relationship between Chla concentrations and DIN load

ratio – Chla peaks at the Redfield ratio

Determining required nutrient reductions

- Based on the statistical model the riverine nutrient load reduction required to achieve the mean chla-concentrations was calculated
- It was asssumed that atmospheric deposition is reduced by 20% according to the Gothenburg Protocol
- TN loads need to be reduced by 34% to 21.500 t/a; this is equivalent to a target concentration of **2,6mg/l TN** in the rivers
- This target concentration is used for management purposes, it is not legally binding
- This target will also ensure that the nutrient reduction requirements of the BSAP are met!
- For TP concentrations it was demonstrated that the G/M boundaries set for rivers (0.1 to 0.15mg/l) are sufficient to achieve the chla target concentrations and also the requirements of the BSAP

Step 3 – Transferring the nitrogen target concentration inland

- Model MONERIS was used
- Nutrient retention was considered
- Calculation of regionally differentiated nitrogen target concentrations

Cumulative nitrogen retention under average hydrological conditions in % Average annual TN concentrations required to achieve good status in the German Baltic and North Sea

References

Schernewski et al. (2015): Implementation of European marine policy: new water quality targets of German Baltic waters. Marine Policy 51, pp 305-321

Hirt et al. (2014): Reference conditions for rivers of the German Baltic Sea catchment: reconstructing nutrient regimes using the model MONERIS, Regional Environmental Change, Vol.14, pp 1123-1138

Trepel & Fischer (2014): Übertragung meeresökologischer Reduzierungsziele ins Binnenland. Wasser und Abfall No.9, pp 42-45

Thank you for your attention

